Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Biol. Res ; 50: 31, 2017. graf
Article in English | LILACS | ID: biblio-950882

ABSTRACT

BACKGROUND: MiR-320 is downregulated in multiple cancers, including glioma and acts as tumor suppressor through inhibiting tumor cells proliferation and inducing apoptosis. PBX3 (Pre-B cell leukemia homeobox 3), a putative target gene of miR-320, has been reported to be upregulated in various tumors and promote tumor cell growth through regulating MAKP/ERK pathway. This study aimed to verify whether miR-320 influences glioma cells growth through regulating PBX3. METHODS: Twenty-four human glioma and paired adjacent nontumorous tissues were collected for determination of miR-320 and PBX3 expression using RT-qPCR and western blot assays. Luciferase reporter assay was performed to verify the interaction between miR-320 and its targeting sequence in the 3' UTR of PBX3 in glioma cells U87 and U251. Increased miR-320 level in U87 and U251 cells was achieved through miR-320 mimic transfection and the effect of which on glioma cells growth, proliferation, cell cycle, apoptosis and activation of Raf-1/MAPK pathway was determined using MTT, colony formation, flow cytometry and western blot assays. PBX3 knockdown was performed using shPBX3 and the influence on MAPK pathway activation was evaluated. RESULTS: MiR-320 downregulation and PBX3 upregulation was found in glioma tissues. Luciferase reporter assays identified miR-320 directly blinds to the 3' UTR of PBX3 in glioma cells. MiR-320 mimic transfection suppressed glioma cells proliferation, and induced cell cycle arrest and apoptosis. Both miR-320 overexpression and PBX3 knockdown inhibited Raf-1/MAPK activation. CONCLUSION: MiR-320 may suppress glioma cells growth and induced apoptosis through the PBX3/Raf-1/MAPK axis, and miR-320 oligonucleotides may be a potential cancer therapeutic for glioma.


Subject(s)
Humans , Brain Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Homeodomain Proteins/metabolism , MicroRNAs/metabolism , Glioma/metabolism , Brain Neoplasms/pathology , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Differentiation/drug effects , Up-Regulation , Cell Line, Tumor , Cell Proliferation/drug effects , Glioma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL